Rice Husk Biochar as an Amendment to Improve Sweet Corn Performance on Bengkulu Entisols
Keywords:
entisol; marginal land; rice husk biochar; soil amendment; sweet cornAbstract
Background: Entisol soil in the coastal area of Bengkulu has low fertility with limited organic matter and nutrient contents, so it requires soil amendments to increase plant productivity. Aim: This study aims to evaluate the effectiveness of rice husk biochar on improving soil chemical properties and increasing sweet corn (Zea mays saccharata) yield. Methods: The experiment was conducted on a polybag scale (10 kg of soil per polybag) using a Completely Randomised Design (CRD) with four doses of rice husk biochar (0, 5, 10, and 15 t/ha), with each treatment repeated six times. Biochar was produced through indirect pyrolysis at a temperature of approximately 400 °C, incubated for four weeks, and applied to the soil at 50% of the recommended fertilizer dose. Results: The analysis results showed that the application of rice husk biochar had a significant effect (p < 0.05) on increasing soil pH, organic carbon (C), total nitrogen (N), and cation exchange capacity (CEC). A dose of 10 t/ha increased soil pH from 6.01 to 6.61, organic C from 2.09% to 2.81%, total N from 0.11% to 0.17%, and CEC from 4.98 to 5.64 cmol(+)/kg, significantly higher than the control (p < 0.05). This increase in fertility directly impacted the growth and yield of sweet corn, with cob weight reaching 437.5 g, significantly greater than the control at p < 0.05, but not significantly different from the dose of 15 t/ha. Conclusion: Thus, rice husk biochar at a dose of 10 t/ha effectively improves Entisol soil quality and increases sweet corn yields, and has the potential to be applied as a sustainable agricultural innovation in tropical marginal lands.
References
Abdu, N., Sarki, Y. A., Joseph, J., Shehu, Y., & Yahaya, S. M. (2025). Biochar-enhanced soil pH and nutrient retention in Sudan Savanna agricultural soils of Nigeria. Academia Environmental Sciences and Sustainability, 2(2), 1–8. https://doi.org/10.20935/acadenvsci7664
Abed, R. M. (2022). Effect of biochar in arbuscular mycorrhiza fungi (Glomus mosseae) activity and growth of sweet corn plant. Journal of University of Anbar for Pure Science, 12(1), 19–27. https://doi.org/10.37652/juaps.2022.171462
Adebajo, S. O., Akintokun, P. O., OJO, A. E., & Ajamu, I. A. (2020). Effects of rice husk biochar on the growth characteristics, rhizospheric microflora and yield of tomato plants. Journal of Agricultural Science and Environment, 19(1), 60–72. https://doi.org/10.51406/jagse.v19i1.2015
Adekiya, A. O., Agbede, T. M., Aboyeji, C. M., Dunsin, O., & Simeon, V. T. (2019). Effects of biochar and poultry manure on soil characteristics and the yield of radish. Scientia Horticulturae, 243(3), 457–463. https://doi.org/10.1016/j.scienta.2018.08.048
Ariningsih, E., Ashari, Mardiharini, M., Sujianto, Irawan, Rahayu, H. S. P., Saleh, Y., Slameto, Suharyon, & Septanti, K. S. (2024). The potential utilisation of rice biomass for biochar to support sustainable rice farming development in Indonesia. BIO Web of Conferences, 119, 1–9. https://doi.org/10.1051/bioconf/202411905001
Bhat, S. A., Kuriqi, A., Dar, M. U. D., Bhat, O., Sammen, S. S., Reza, A., Islam, T., Elbeltagi, A., Shah, O., Ai-ansari, N., & Ali, R. (2022). Application of biochar for improving physical , chemical , and hydrological soil properties : A systematic review. Sustainability, 14(11104), 1–16. https://doi.org/10.3390/su141711104
Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36(2), 1–18. https://doi.org/10.1007/s13593-016-0372-z
Fidel, R., Laird, D., Thompson, M., & Lawrinenko, M. (2017). Characterization and quantification of biochar alkalinity. Chemosphere, 167, 367-373. https://doi.org/10.1016/j.chemosphere.2016.09.151
Frimpong, K. A., Abban-Baidoo, E., & Marschner, B. (2021). Can combined compost and biochar application improve the quality of a highly weathered coastal savanna soil? Heliyon, 7(5), e07089. https://doi.org/10.1016/j.heliyon.2021.e07089
Hossin, M. S., Mukta, M. A., Talukder, M. A. R., Rahman, M. M., Majumder, M. S. I., & Uddin, M. R. (2020). Characterization of biochars derived from different organic wastes. Journal of Experimental Agriculture International, 42(4), 44–50. https://doi.org/10.9734/jeai/2020/v42i430498
Jahromi, N. B., Lee, J., Fulcher, A., Walker, F., Jagadamma, S., & Arelli, P. (2020). Effect of biochar application on quality of flooded sandy soils and corn growth under greenhouse conditions. Agrosystems, Geosciences and Environment, 3(1), 1–8. https://doi.org/10.1002/agg2.20028
Jusoh, M. F. J., Xin, L. J., Ywih, C. H., Abdullah, P. S., Radzi, N. M., Zainol Abidin, M. A., & Abdul Muttalib, M. F. (2021). Effect of wood vinegar and rice husk biochar on soil properties and growth performances of immature kenaf (Hibiscus cannabinus) planted on BRIS soil. Journal of Tropical Resources and Sustainable Science (JTRSS), 9(1), 48–57. https://doi.org/10.47253/jtrss.v9i1.709
Kartina, Laila, A., Natawijaya, A., & Susilawati, R. (2023). Respons keserempakan berbunga dan mutu benih beberapa galur jagung manis (Zea mays subsp. mays L.) terhadap aplikasi dosis pupuk boron. Jurnal AGRO, 10(1), 137–148. https://doi.org/10.15575/26103
Kurniah, S., Maruf, M., Patricia, R., Sule, O., & Burhan, A. R. (2024). Pelatihan pembuatan biochar sebagai sumber nutrisi bagi tanaman di greenhouse Universitas Sulawesi Barat. Jurnal Tarreang: Tren Pengabdian Masyarakat Agrokompleks, 1(2), 64–68. https://doi.org/10.31605/jtarreang.v1i2.4142
Maharani, P. H., Maftu’ah, E., Sulaeman, Y., Napisah, K., Masganti, M., Mukhlis, M., Anwar, K., Ningsih, R. D., & Chairuman, N. (2025). Integrated rice husk biochar and compost to improve acid sulfate soil properties and corn growth. Journal of Degraded and Mining Lands Management, 12(4), 8097–8106. https://doi.org/10.15243/jdmlm.2025.124.8097
Mahindru, V., Sharma, P., & Abrol, V. (2024). Efficiency of biochar with mineral fertilizers on soil properties and crop growth. International Journal of Advanced Biochemistry Research, 8(3), 863–867. https://doi.org/10.33545/26174693.2024.v8.i3j.845
Mahmud, M. N., Muniza, N. T., & Ahmed, A. (2025). Low-cost biochar: a sustainable approach to improve soil fertility and crop yield for small-scale farmers. American Journal of Environmental Economics, 4(1), 67–72. https://doi.org/10.54536/ajee.v4i1.4613
Manickam, T., Cornelissen, G., Bachmann, R. T., Ibrahim, I. Z., Mulder, J., & Hale, S. E. (2015). Biochar application in Malaysian sandy and acid sulfate soils: Soil amelioration effects and improved crop production over two cropping seasons. Sustainability (Switzerland), 7(12), 16756–16770. https://doi.org/10.3390/su71215842
Masria, Salli, M. K., Tang, B. Y., & Syarifuddin, M. (2021). The effect of biochar corn cobs and rice husks on the chemical properties of Vertisol from Kupang Regency of East Nusa Tenggara. IOP Conference Series: Earth and Environmental Science, 807(4). https://doi.org/10.1088/1755-1315/807/4/042026
Maydayana, A., Kusumo, H., Arifin, L., Bakti, A., Andriati, R., & Dewi, S. (2023). The Impact of Biochar Application on Alterations in Chemical Properties of Vertisol Soil and the Growth of Mung Bean (Vigna radiata L.). J Sains Teknologi & Lingkungan, 9(4), 663–674.
Mosharrof, M., Uddin, M. K., Sulaiman, M. F., Mia, S., Shamsuzzaman, S. M., & Haque, A. N. A. (2021). Combined Application of Biochar and Lime Increases Maize Yield and Accelerates Carbon Loss from an Acidic Soil. Agronomy, 11(7), 1313. https://doi.org/10.3390/agronomy11071313
Nazirah, L., Zuhra, I., Satriawan, H., Agroteknologi, S., Pertanian, F., Malikussaleh, U., Pascasarjana, P., & Muslim, U. Al. (2022). The growth potential test of several varieties of maize (Zea mays) in Bireuen district. Jurnal Agrotek Ummat,. 9(1), 51–64.
Niu, Z., Ma, J., Fang, X., Xue, Z., & Ye, Z. (2022). Effects of application of rice husk biochar and limestone on cadmium accumulation in wheat under glasshouse and field conditions. Scientific Reports, 12(1), 1–9. https://doi.org/10.1038/s41598-022-25927-3
Rumbang, N., Paulini, Anjalani, R., & Asie, E. R. (2024). Application of Cattle Manure Compost Mixed With Kalakai (Stenochlaena palustris) in Peatlands on Growth and Components of Yield Of Sweet Corn (Zea mays Saccharata). IOP Conference Series: Earth and Environmental Science, 1421(1), 1–6. https://doi.org/10.1088/1755-1315/1421/1/012019
Saifulloh, A. A., & Suntari, R. (2022). Growth enhancement, uptake of N, P, K nutrients and production of maize in an Entisol of Kalidawir, Tulungagung due to Application of Cow Manure Fertilizer and NPK Fertilizer. Jurnal Tanah Dan Sumberdaya Lahan, 9(1), 193–200. https://doi.org/10.21776/ub.jtsl.2022.009.1.21
Sharkawi, H. M. E., Abdelkhalik, A. F., H. A. El Sherbiny, M. E. A. Abu Ziada, & Mashaly, I. A. (2016). Bioremediation Potential of Bacteria and Rice Husk Biochar for Cadmium and Lead in Wastewater. Global Journal of Agricultural Innovation, Research & Development, 3(1), 10–22. https://doi.org/10.15377/2409-9813.2016.03.01.2
Sianturi, S. M., Muktamar, Z., & Chozin, M. (2019). Enhancing soil chemical properties and sweet corn growth by solid organic amendments in Ultisol. Journal of Land Restoration, 2(1), 1–8. https://doi.org/10.31186/terra.2.1.1-8
Sofyan, E. T., Herdiyantoro, D., & Pratama, D. (2024). Impact of controlled release NPK (16:16:16) fertilizer on soil total nitrogen content, nitrogen uptake, and growth of sweet corn (Zea mays saccharata L.) in Jatinangor Inceptisols. Asian Journal of Research in Agriculture and Forestry, 10(4), 489–497. https://doi.org/10.9734/ajraf/2024/v10i4351
Sulakhudin, Manurung, R., Abdurrahman, T., & Karpriana, A. P. (2022). Effect of combination of inorganic fertilizer and biochar-coastal sediment on nutrient availability and growth of corn plants in alluvial soil. IOP Conference Series: Earth and Environmental Science, 1005(1). https://doi.org/10.1088/1755-1315/1005/1/012017
Suryani, R., Sutikarini, S., Masulili, A., & Suyanto, A. (2023). Improvement of corn plant yield through the application of biochar and trichocompost from rice harvest waste. International Journal of Multi Discipline Science (IJ-MDS), 6(2), 117. https://doi.org/10.26737/ij-mds.v6i2.4641
Umam, S., Padjung, R., & Muh, J. (2025). Toward Greener Harvests: Unveiling the Synergistic Effects of Biochar and Biosaka on Sweet Corn (Zea mays saccharata) Growth, Yield, and Physiology. BIO Web of Conferences, 158, 1–11. https://doi.org/10.1051/bioconf/202515803010
Wang, Y., & Li, M. (2018). Role of biochar amendment on soil carbon mineralization and microbial biomass. Journal of Geoscience and Environment Protection, 06(11), 173–180. https://doi.org/10.4236/gep.2018.611013
Wigan, M. B. (2023). Impact of biochar application on chemical and microbial properties of soil. International Journal of Multidisciplinary: Applied Business and Education Research, 4(7), 2503–2510. https://doi.org/10.11594/ijmaber.04.07.27
Zhang, M., Riaz, M., Zhang, L., El-Desouki, Z., & Jiang, C. (2019). Biochar induces changes to basic soil properties and bacterial communities of different soils to varying degrees at 25 mm rainfall: More effective on acidic soils. Frontiers in Microbiology, 10(1321), 1–15. https://doi.org/10.3389/fmicb.2019.01321
Zhang, Y., Chen, H., Xiang, J., Xiong, J., Wang, Y., Wang, Z., & Zhang, Y. (2022). Effect of Rice-straw biochar application on the acquisition of rhizosphere phosphorus in acidified paddy soil. Agronomy, 12(7), 1–12. https://doi.org/10.3390/agronomy12071556
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Welly Herman, Umi Salamah, Erlina Rahmayuni, Zulkarnain Zulkarnain (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.








